784 research outputs found

    A New Hybrid Framework to Efficiently Model Lines of Sight to Gravitational Lenses

    Full text link
    In strong gravitational lens systems, the light bending is usually dominated by one main galaxy, but may be affected by other mass along the line of sight (LOS). Shear and convergence can be used to approximate the contributions from less significant perturbers (e.g. those that are projected far from the lens or have a small mass), but higher order effects need to be included for objects that are closer or more massive. We develop a framework for multiplane lensing that can handle an arbitrary combination of tidal planes treated with shear and convergence and planes treated exactly (i.e., including higher order terms). This framework addresses all of the traditional lensing observables including image positions, fluxes, and time delays to facilitate lens modelling that includes the non-linear effects due to mass along the LOS. It balances accuracy (accounting for higher-order terms when necessary) with efficiency (compressing all other LOS effects into a set of matrices that can be calculated up front and cached for lens modelling). We identify a generalized multiplane mass sheet degeneracy, in which the effective shear and convergence are sums over the lensing planes with specific, redshift-dependent weighting factors.Comment: 13 pages, 2 figure

    Optimal Mass Configurations for Lensing High-Redshift Galaxies

    Full text link
    We investigate the gravitational lensing properties of lines of sight containing multiple cluster-scale halos, motivated by their ability to lens very high-redshift (z ~ 10) sources into detectability. We control for the total mass along the line of sight, isolating the effects of distributing the mass among multiple halos and of varying the physical properties of the halos. Our results show that multiple-halo lines of sight can increase the magnified source-plane region compared to the single cluster lenses typically targeted for lensing studies, and thus are generally better fields for detecting very high-redshift sources. The configurations that result in optimal lensing cross sections benefit from interactions between the lens potentials of the halos when they overlap somewhat on the sky, creating regions of high magnification in the source plane not present when the halos are considered individually. The effect of these interactions on the lensing cross section can even be comparable to changing the total mass of the lens from 10^15 M_sun to 3x10^15 M_sun. The gain in lensing cross section increases as the mass is split into more halos, provided that the lens potentials are projected close enough to interact with each other. A nonzero projected halo angular separation, equal halo mass ratio, and high projected halo concentration are the best mass configurations, whereas projected halo ellipticity, halo triaxiality, and the relative orientations of the halos are less important. Such high mass, multiple-halo lines of sight exist in the SDSS.Comment: Accepted for publication in ApJ; emulateapj format; 24 pages, 13 figures, 1 table; plots updated to reflect erratu

    Microlensing of Central Images in Strong Gravitational Lens Systems

    Full text link
    We study microlensing of the faint images that form close to the centers of strong gravitational lens galaxies. These central images, which have finally begun to yield to observations, naturally appear in dense stellar fields and may be particularly sensitive to fine granularity in the mass distribution. The microlensing magnification maps for overfocussed (i.e., demagnified) images differ strikingly from those for magnified images. In particular, the familiar "fold" and "cusp" features of maps for magnified images are only present for certain values of the fraction, f, of the surface mass density contained in stars. For central images, the dispersion in microlensing magnifications is generally larger than for normal (minimum and saddle) images, especially when the source is comparable to or larger than the stellar Einstein radius. The dispersion depends in a complicated way on f; this behaviour may hold the key to using microlensing as a probe of the relative densities of stars and dark matter in the cores of distant galaxies. Quantitatively, we predict that the central image C in PMN J1632-0033 has a magnification dispersion of 0.6 magnitudes for Rsrc/Rein <~ 1, or 0.3 mag for Rsrc/Rein = 10. For comparison, the dispersions are 0.5-0.6 mag for image B and 0.05-0.1 mag for image A, if Rsrc/Rein <~ 1; and just 0.1 mag for B and 0.008 mag for A if Rsrc/Rein = 10. (The dispersions can be extrapolated to larger sources sizes as sigma \propto Rsrc^{-1}.) Thus, central images are more susceptible than other lensed images to microlensing and hence good probes for measuring source sizes.Comment: 12 pages; accepted in MNRAS; many new magnification maps and significantly expanded analysis of magnification map structur

    The Effect of Environment on Shear in Strong Gravitational Lenses

    Get PDF
    Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of gamma = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six 4-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is gamma = 0.05 (ranging from 0.01 to 0.14), indicating that line-of-sight contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the line of sight, particularly those bright (I < 21.5) galaxies projected within 5' of the lens.Comment: Accepted for publication in The Astrophysical Journal; 28 pages, 9 figures, 5 table
    • …
    corecore